■ Scherer "orthographic" formulae

Let $R=1$ and any rescaling be done in a final optional step. We then have:

$$
y=\sin (\phi)
$$

The formula for the circle going through the poles and the point $\{0, \sin (\lambda)\}$ on the equator has with $s=\sin (\lambda)$ the general form:

$$
\left(x-\frac{s^{2}-1}{2 s}\right)^{2}+y^{2}=\left(\frac{s^{2}+1}{2 s}\right)^{2} \text { for }|s|>0
$$

We can express now x as a function of $s=\sin (\lambda)$ and $y=\sin (\phi)$

$$
x=\frac{1}{2 s}\left(s^{2}-1 \pm \sqrt{s^{4}+s^{2}\left(2-4 y^{2}\right)+1}\right)
$$

The solution for x must have the same sign as λ.
For $s=\sin (\lambda)=0$, one takes $\{x, y\}=\{0, \sin (\phi)\}$.

