■ Scherer "orthographic" formulae

Let R = 1 and any rescaling be done in a final optional step. We then have:

$$y = \sin(\phi)$$

The formula for the circle going through the poles and the point $\{0, \sin(\lambda)\}$ on the equator has with $s = \sin(\lambda)$ the general form:

$$\left(x - \frac{s^2 - 1}{2s}\right)^2 + y^2 = \left(\frac{s^2 + 1}{2s}\right)^2 \text{ for } |s| > 0$$

We can express now *x* as a function of $s = \sin(\lambda)$ and $y = \sin(\phi)$

$$x = \frac{1}{2s} \left(s^2 - 1 \pm \sqrt{s^4 + s^2 \left(2 - 4y^2 \right) + 1} \right)$$

The solution for *x* must have the same sign as λ .

For $s = \sin(\lambda) = 0$, one takes $\{x, y\} = \{0, \sin(\phi)\}$.