Nach Hause

Neuigkeiten

Kartenverzeichnis

Karten­aus­schnitte

Wandern

Anders Wandern

Draußensein

Kartographie

• Kartennetz­ent­würfe
•• Thema: 100 Jahre Gauß-Krüger-Projektion
•• Thema: 100 Jahre Gauß-Krüger-Projektion II
•• In die Ebene
•• Auf den Kegel
•• Auf den Zylinder
•• Weitere Zylinderentwürfe
•• Abweitungstreu
•• Weltkartenklassiker
•• Wagners Welten
•• Der Wagner VIII
•• Schiefe Lagen
•• Tobler 1964
•• Tobler 2011
•• Canters Welt
•• Canters II
•• Canters III
•• Canters IV
•• The Canters Index
•• Györffys Netze
•• Jennys Flexprojector
•• Minimum Error Projektionen
•• Polykonische Entwürfe
•• Pseudozylinder
•• Globularprojektionen
•• Weitere Entwürfe
•• Sternförmige Kartennetze
•• Weltkarten in Goodescher Form
•• Globussegmente
•• Ein Globus zum selbstbauen
•• Hintergrund
•• The Anderson List
•• Index

Themen

Karten bestellen

Links

Kontakt

Redaktion

Anhang

The Canters Index
All Canters 2002 Projections. W = World Projections = Weltkartennetze, P = Partial Projections = Kontinentalkarten.
Canters Index Chapter Fig. No. Page of Fig. Table No. Notes Canters Full Name
W01 5.3.1 5.7 182     Optimised version of Wagner I
W02 5.3.1 5.8 183     Optimised version of Wagner II
W03           [Not used]
W04           [Not used]
W05           [Not used]
W06 5.3.1 5.6 181     Optimised version of Wagner VI
W07 5.3.1 5.11 187     Optimised version of Wagner VII
W08 5.3.1 5.12 188     Optimised version of Wagner VIII
W09 5.3.1 5.10 186     Optimised version of Wagner IX
W10 5.3.2 5.13 191 5.3 C40 (40 Coefficients) Low-error polyconic projection obtained through non-constrained optimisation
W11 5.3.2 5.14 193 5.4 C16 Low-error polyconic projection with straight equator and symmetry about the central meridian
W12 5.3.2 5.15 195 5.5 C10 Low-error polyconic projection with twofold symmetry
W13 5.3.2 5.16 197 5.6 C8 No. 1 Low-error polyconic projection with twofold symmetry and equally spaced parallels
W14 5.3.2 5.17 199 5.7 C8 No. 2, „The Classic Canters“ Low-error polyconic projection with twofold symmetry, equally spaced parallels and a correct ratio of the axes
W15 5.3.2 5.18 201 5.8 C6 No. 1, Pseudocylinder I Low-error pseudocylindrical projection with twofold symmetry
W16 5.3.2 5.19 202 5.9 C6 No. 2, Pseudocylinder II Low-error pseudocylindrical projection with twofold symmetry and a pole length half the length of the equator
W17 5.3.2 5.20 204 5.10 C6 No. 3, Pseudocylinder III Low-error pseudocylindrical projection with twofold symmetry and a correct ratio of the axes
W18 5.3.2 5.21 206 5.11 C8 No. 3 Low-error pointed polar polyconic projection with twofold symmetry, equally spaced parallels and a correct ratio of the axes
W19 5.3.2 5.23 208 5.12 C6 No. 4, Pseudocylinder IV Low-error pointed polar pseudocylindirical projection with twofold symmetry and a correct ratio of the axes
W20 5.3.2 5.24 209 5.13 C8 No. 4 Low-error simple oblique polyconic projection with pointed meta pole and constand scale along the axes [Centre 61° N, Rotation 24° E]
W21 5.3.2 5.25 211 5.14 C8 No. 5 Low-error simple oblique polyconic projection with pointed meta pole and constand scale along the axes, centered at 45° N, 20° E
W22 5.3.2 No Fig. 210 (Text) Low-error plagal aspect polyconic projection with pointed meta-pole and equally spaces axes. Meta pole 29° N, 143° W, Rotation 26°, Antarctica interrupted
W23 5.3.2 5.26 213 5.15 C8 No. 6 Low-error plagal aspect polyconic projection with pointed meta-pole (30° N, 140° W), geographic north pole at meta-longitude of 30° and constant scale along the axes
W24           [Not used]
W25           [Not used]
W26           [Not used]
W27           [Not used]
W28           [Not used]
W29           [Not used]
W30 5.3.3 5.27 215 5.16 C6 No. 5 Low-error equal-area transformation of Hammer-Wagner with twofold symmetry and correct ratio of the axes
W31 5.3.3 5.28 216 5.17 C6 No. 6 Low-error equal-area transformation of Hammer-Wagner with twofold symmetry and constant scale along the equator
W32 5.3.3 5.29 217 5.18 C6 No. 7 Low-error equal-area transformation of Hammer-Aitoff with twofold symmetry and correct ratio of the axes
W33 5.3.3 5.30 218 5.19 C6 No. 8 Low-error equal-area transformation of the sinusoidal projection with twofold symmetry, equally divided, straight parallels and a correct ratio of the axes
W34 5.3.3 5.31 220 5.20 C6 No. 9 Low-error equal-area transformation of the sinusoidal projection with twofold symmetry, equally divided, straight parallels and a correct ratio of the axes (Antarctica included in optimisation)
P01 5.4.1 5.21 222     America, low-error oblique azimuthal equal-area
P02 5.4.1 5.21 222     America, low-error oblique azimuthal equidistant
P03 5.4.1 5.21 222     America, low-error oblique azimuthal conformal
P04 5.4.1 5.21 222     America, low-error oblique conical equal-area
P05 5.4.1 5.21 222     America, low-error oblique conical equidistant
P06 5.4.1 5.21 222     America, low-error oblique conical conformal
P07 5.4.1 5.21 222     America, low-error oblique cylindrical equal-area
P08 5.4.1 5.21 222     America, low-error oblique cylindrical equidistant
P09 5.4.1 5.21 222     America, low-error oblique cylindircal conformal
P10 5.4.2 5.34 (a) 228 5.23 Author: Prof. W. Tobler Eurafrica, first order transformation with equal maximum scale factor along the two major axes
P11 5.4.2 5.34 (b) 228 5.23   Eurafrica, first order transformation with minimum mean finite scale factor
P12 5.4.2 5.35 (a) 229 5.23   Eurafrica, third-order with twofold symmetry
P13 5.4.2 5.36 (a) 230 5.23   Eurafrica, third-order with one-fold symmetry
P14 5.4.2 5.37 (a) 231 5.23   Eurafrica, third-order without symmetry
P15 5.4.2 5.35 (b) 229 5.23   Eurafrica, fifth-order with twofold symmetry
P16 5.4.2 5.36 (b) 230 5.23   Eurafrica, fifth-order with one-fold symmetry
P17 5.4.2 5.37 (b) 231 5.23   Eurafrica, fifth-order without symmetry
P18            
P19            
P20            
P21            
P22            
P23            
P24            
P25            
P26            
P27            
P28            
P29            
P30 5.4.3 5.43 238 5.26   EU, first-order transformation
P31 5.4.3 5.44 239 5.26   EU, second-order transformation with one-fold symmetry
P32 5.4.3 5.46 240 5.26   EU, second-order transformation without symmetry
P33 5.4.3 5.50 245 5.28   EU, second-order transformation without symmetry (single boundary definition)
P34 5.4.3 5.45 239 5.26   EU, third-order transformation with one-fold symmetry
P35 5.4.3 5.47 241 5.26   EU, third-order transformation without symmetry
P36 5.4.3 5.51 246 5.28   EU, third-order transformation without symmetry (single boundary definition)
P37 5.4.3 No Fig. 5.26   EU, fifth-order transformation with one-fold symmetry
P38 5.4.3 5.48 241 5.26   EU, fifth-order transformation without symmetry
P39 5.4.3 5.52 246 5.28   EU, fifth-order transformation without symmetry (single boundary defintion)